Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Mass Spectrom (Chichester) ; : 14690667241251792, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706254

ABSTRACT

This paper proposed a dual-layer linear ion trap mass analyzer (dLIT) based on micro-electromechanical systems (MEMS) technology and stacked-layer structure for the development of MEMS mass spectrometry. Its basic performance and potential capabilities were explored by ion trajectory simulations. The theoretical formulas were modified by implementing multipole expansion. The simulation results were confirmed to be highly consistent with theoretical calculations in multiple aspects, including stability diagram, secular frequencies, and mass linearity, with only a deviation of 1-2%. In the boundary ejection mode, close to 100% ejection was achieved in a single dimension by applying extra quadrupole DC voltage. Preliminary simulation results showed that dLIT can achieve a peak width of ∼2 mass units (full width at half maximum, FWHM) for m/z 60 ions even at pressures as high as 50 Pa. Furthermore, the application of AC frequency scanning mode in dLIT was also evaluated, and preliminary simulation results yield a peak width of 0.3-0.4 mass units (FWHM). The dLIT offered several advantages, including high-precision fabrication at the sub-millimeter scale, excellent high-pressure performance, and a clear physical model. It preliminarily proved to be an ideal mass analyzer for MEMS mass spectrometry.

2.
J Chromatogr A ; 1722: 464903, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38615559

ABSTRACT

High-Field Asymmetric Ion Mobility Spectrometry (FAIMS) is a technique for ion separation and detection based on ion mobility variation under high electronic field. While compensation voltage scanning speed is a fundamental parameter in FAIMS, its impact on spectra remains unclear. In this work, a function referred to as F-EMG is introduced to describe the impact of compensation voltage scanning speed on FAIMS spectra, and the properties of the function are studied. Theoretical analysis emphasizes the impact of the scanning speed on peak height, position, and symmetry, as well as the capability of the F-EMG function to progressively approach Gaussian function at lower scanning speeds. Furthermore, the function indicates that spectra obtained in positive and negative scanning modes exhibits symmetry. An experimental validation, conducted with a custom FAIMS setup and analyzing hydrogen sulfide, ethylbenzene, toluene, styrene, benzene and ammonia, confirms the model's influence on peak features, fitting accuracy, and exhibits a closer alignment with the Gaussian function at lower scanning speeds. Additionally, the experimental data indicate that the spectra show symmetry in positive and negative scanning models. This work not only improves understanding of FAIMS spectral analysis but also introduces a robust method for enhancing data accuracy across varying scanning speeds.


Subject(s)
Ion Mobility Spectrometry , Ion Mobility Spectrometry/methods , Models, Theoretical , Ions/chemistry , Ions/analysis
3.
Talanta ; 273: 125907, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38479033

ABSTRACT

Underwater mass spectrometry is characterized by excellent consistency, strong specificity, and the ability to simultaneously detect multiple substances, making it a valuable tool in research fields such as aquatic ecosystems, hydrothermal vents, and the global carbon cycle. Nevertheless, current underwater mass spectrometry encounters challenges stemming from the high-water vapor content, constituting proportions of nearly 90%. This results in issues such as peak overlap, interference with peak height, decreased ionization efficiency and, consequently, make it difficult to achieve low detection limits for extremely low concentrations of gases, such as methane, and impede the detection of background CH4 levels. In this study, we optimized the design of the sampling gas path and developed a high gas-tightness, high pressure-resistant membrane inlet system, coupled with a small-volume, low-power online water vapor removal system. This innovation efficiently eliminates water vapor while maintaining a high permeation flux of the target gases. By elevating the vacuum level to the order of 1E-6 Torr, the ionization efficiency and detection performance were improved. Based on this, we created an online water vapor removal membrane inlet mass spectrometer and conducted experimental research. Results indicated that the water removal efficiency approached 100%, and the vacuum level was elevated by more than 2 orders of magnitude. The detection limit for CH4 increased from over 600 nmol/L to 0.03 nmol/L, representing an improvement of over 4 orders of magnitude, and reaching the level of detecting background CH4 signals in deep-sea and lakes. Furthermore, the instrument exhibited excellent responsiveness and tracking capability to concentration changes on the second scale, enabling in situ analysis of rapidly changing concentration scenarios.

4.
J Environ Sci (China) ; 123: 367-386, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521999

ABSTRACT

Emissions from mobile sources and stationary sources contribute to atmospheric pollution in China, and its components, which include ultrafine particles (UFPs), volatile organic compounds (VOCs), and other reactive gases, such as NH3 and NOx, are the most harmful to human health. China has released various regulations and standards to address pollution from mobile and stationary sources. Thus, it is urgent to develop online monitoring technology for atmospheric pollution source emissions. This study provides an overview of the main progress in mobile and stationary source monitoring technology in China and describes the comprehensive application of some typical instruments in vital areas in recent years. These instruments have been applied to monitor emissions from motor vehicles, ships, airports, the chemical industry, and electric power generation. Not only has the level of atmospheric environment monitoring technology and equipment been improving, but relevant regulations and standards have also been constantly updated. Meanwhile, the developed instruments can provide scientific assistance for the successful implementation of regulations. According to the potential problem areas in atmospheric pollution in China, some research hotspots and future trends of atmospheric online monitoring technology are summarized. Furthermore, more advanced atmospheric online monitoring technology will contribute to a comprehensive understanding of atmospheric pollution and improve environmental monitoring capacity.


Subject(s)
Air Pollutants , Air Pollution , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Monitoring , Particulate Matter/analysis , Technology , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
5.
Eur J Mass Spectrom (Chichester) ; 24(2): 191-195, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29169249

ABSTRACT

In conventional high-field asymmetric waveform ion mobility spectrometry signal acquisition, multi-cycle detection is time consuming and limits somewhat the technique's scope for rapid field detection. In this study, a novel intelligent detection approach has been developed in which a threshold was set on the relative error of α parameters, which can eliminate unnecessary time spent on detection. In this method, two full-spectrum scans were made in advance to obtain the estimated compensation voltage at different dispersion voltages, resulting in a narrowing down of the whole scan area to just the peak area(s) of interest. This intelligent detection method can reduce the detection time to 5-10% of that of the original full-spectrum scan in a single cycle.

6.
Rapid Commun Mass Spectrom ; 30(16): 1914-22, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27476664

ABSTRACT

RATIONALE: High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is an analytical technique based on the principle of non-linear electric field dependence of coefficient of mobility of ions for separation that was originally conceived in the Soviet Union in the early 1980s. Being well developed over the past decades, FAIMS has become an efficient method for the separation and characterization of gas-phase ions at ambient pressure, often in air, to detect trace amounts of chemical species including explosives, toxic chemicals, chemical warfare agents and other compounds. However the resolution of FAIMS and ion separation capability need to be improved for more applications of the technique. METHODS: The effects of above-ambient pressure varying from 1 to 3 atm on peak position, resolving power, peak width, and peak intensity are investigated theoretically and experimentally using micro-fabricated planar FAIMS in purified air. RESULTS: Peak positions, varying with pressure in a way as a function of dispersion voltage, could be simplified by expressing both compensation and dispersion fields in Townsend units for E/N, the ratio of electric field intensity (E) to the gas number density (N). CONCLUSIONS: It is demonstrated that ion Townsend-scale peak positions remain unchanged for a range of pressures investigated, implying that the higher the pressure is, stronger compensation and separation fields are needed within limits of air breakdown field. Increase in pressure is found to separate ions that could not be distinguished in ambient pressure, which could be interpreted as the differentials of ions' peak compensation voltage expanded wider than the dilation of peak widths leading to resolving power enhancement with pressure. Increase in pressure can also result in an increase in peak intensity.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(5): 1153-8, 2015 May.
Article in Chinese | MEDLINE | ID: mdl-26415418

ABSTRACT

The solution of ion mobility's nonlinear function coefficients α2 and α4 is the basis for achieving substance identification of High Field Asymmetric waveform Ion Mobility Spectrometry (FAIMS). Currently, nonlinear function coefficients α2 and α4 lack priors, meanwhile, existed solving results about α2 and α4 are deficient in error evaluation standard. In this article, acetone, isopropanol and 1, 2-dichlorobenzene were detected under different dispersion voltage by homemade FAIMS. In general, the spectrum peak of same sample at different dispersion voltage value is unique. Different dispersion voltage and corresponding compensation voltage value determines the value of α2 and α4. According to sample spectra at different dispersion voltage value, groups of spectral characteristics were obtained. Affirmatory number of data which were selected from multiple sets of compensation voltage value and dispersion voltage value, so that they were utilized to solved out lots of α2 and α4. Lots of factor have an effect on the accuracy of the solving results of α2 and α4, for instance, value of compensation voltage and dispersion voltage, style of fetching points of dispersion voltage, and so on. Comparing to other factors, style and amount of dispersion voltage is likely to control. By data analyzing huge amounts of α2 and α4 data, this paper explored their characteristic of distribution and correlation about them, research influence of number and method to fetch dispersion voltage detected points for error of solving results. After fitting frequency of α2 and α4, it was found that they conform to normal distribution, goodness of fitting exceed 0. 96, thus standard deviation of their distribution are able to evaluate error of solving results. In addition, a strong correlation exists between them, relevance of sample is -0. 977, -0. 968, -0. 992 respectively. With increasing of computing selected points, the corresponding error of solving results decrease. By comparing the standard deviation of method to fetch dispersion voltage detected points, found that detecting frequency in case of detecting maximum and the 70% of maximum of dispersion voltage value is lower at approximately same standard deviation, solving effect was optimized in unique fetching points style. Based on the premise of ensuring the accuracy of solving results of α2 and α4, it is obvious that reducing the frequency of detections for FAIMS effectively. It created favorable conditions for rapid field detection and precise spectral analysis.

8.
J Mass Spectrom ; 50(6): 792-801, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26169133

ABSTRACT

High-field asymmetric ion mobility spectrometry (FAIMS) has become an efficient technique for separation and characterization of gas-phase ions at ambient pressure, which utilizes the mobility differences of ions at high and low fields. Micro FAIMS devices made by micro-electromechanical system technology have small gaps of the channels, high electric field and good installation precision, as thus they have received great attentions. However, the disadvantage of relatively low resolution limits their applications in some areas. In this study, theoretical analysis and experimental exploration were carried out to overcome the disadvantage. Multiple scans, characteristic decline curves of ion transmission and pattern recognitions were proposed to improve the performance of the microchip-based FAIMS. The results showed that although micro FAIMS instruments as a standalone chemical analyzer suffer from low resolution, by using one or more of the methods proposed, they can identify chemicals precisely and provide quantitative analysis with low detection limit in some applications. Copyright © 2015 John Wiley & Sons, Ltd.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(8): 2050-5, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-23156750

ABSTRACT

FAIMS's ion separation mechanism is based on analyte's characteristic nonlinear relationship between its ion mobility and applied electric field strength. Present characterization methods for this nonlinear relationship are based on precarious assumptions which incur substantial errors under many circumstances. A rigorous method for solving the second and fourth taylor series coefficient of this relationship based on dispersion voltage value (assuming half-sinusoidal waveform) and associated compensation voltage value of spectrum peak is presented, alongside with rigorous analytical functions. FAIMS spectrums were obtained for ethanol, metaxylene and n-butanol using custom-built FAIMS spectrometer, and corresponding second and fourth taylor series coefficients were obtained with the proposed method. Evaluation shows that this method substantially reduces the RMS error between interpolated and measured peak compensation voltage values under different dispersion voltages, confirming its superiority over present methods. This rigorous method would help improve spectral resolutions of FAIMS spectrometer, facilitating high precision FAIMS spectrum database construction and accurate analyte discrimination.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(1): 12-5, 2011 Jan.
Article in Chinese | MEDLINE | ID: mdl-21428045

ABSTRACT

FAIMS is a fast and high sensitive technique for detecting trace volatile organic compounds. Spectra of acetone, benzene and toluene were obtained on a homemade high-field asymmetric waveform ion mobility spectrometer and they can be easily separated in the spectra. Three xylene isomeric compounds were also successfully separated in FAIMS. Effect of carrier gas flow rate on the ion intensity was analyzed, and the optimal flow rate of carrier gas was 220 L x h(-1) which can be used for the optimization of FAIMS instrument. The detection limit for acetone is 100 ng x L(-1) that is an order of magnitude lower than the foreign traditional IMS.

SELECTION OF CITATIONS
SEARCH DETAIL
...